Fogger

Atomizador de Alto Desempenho para Controle Climático em Estufas e Viveiros

- · Reduz a temperatura.
- · Aumenta a umidade.
- As gotas finas evaporam-se antes de chegarem ao cultivo.
- Proporciona condições perfeitas para propagação da planta.
- Altamente recomendado para utilização em sistemas automatizados, com cobertura e fechamento simultâneo dos emissores.

Controle Climático de Temperatura e Umidade para Cultivos Protegidos

O controle climático em estufas está baseado no princípio da troca de energia entre o ar e as gotas de água lançadas no ambiente pelo sistema de nebulização **Fogger** da **NaanDan**.

Uma caloria é a quantidade de calor necessária para elevar a temperatura de 1 cm³ de água em 1 $^{\circ}$ C.

A conversão da água de seu estado líquido ao estado de vapor absorve calor do ambiente em 590 calorias por cada grama de água evaporada. Este processo diminui a temperatura do ar.

A instalação adequada e o funcionamento correto do sistema permitem reduzir a temperatura da estufa em torno de 4 - 6°C, dependendo das condições locais. A eficiência do sistema de resfriamento depende de dois fatores relacionados com o ambiente:

- temperatura externa
- umidade externa

As condições essenciais para um resfriamento eficiente mediante o uso dos **Foggers** da **NaanDan** são as seguintes:

- um sistema de ventilação eficiente que, de maneira constante, introduza ar externo seco na estufa para substituir o ar úmido;
- o funcionamento do sistema de nebulização em forma de pulsos, para diminuir a quantidade de água que possa se depositar sobre as plantas, mudas ou substrato.

Quanta água se necessita para resfriar uma estufa?

De acordo com nossa experiência, uma precipitação de neblina de 2,5 a 3,0 mm/h é quantidade apropriada na maioria dos casos (3 mm/h = 30 m³ por ha/hora).

Como determinar a duração do pulso de neblina e os intervalos entre pulsos?

O intervalo entre pulsos é fixado em 10 segundos. A duração do pulso de neblina depende da velocidade do ar introduzido pelo sistema de ventilação.

Resfriamento

Determinação da Duração do Pulso de Neblina				
Velocidade do Ar	Intervalo	Duração		
0,10m/s	10 segundos	1 - 2 segundos		
0,50m/s	10 segundos	3 - 5 segundos		
1,0m/s	10 segundos	10 segundos		

Um controlador automático deverá ser instalado para manejar os pulsos de neblina, ao qual estarão conectados os sensores de temperatura e umidade.

Devidos aos curtos intervalos de tempo entre os pulsos de neblina, os **Foggers NaanDan** deverão ser instalados conjuntamente com um acessório anti-drenagem,
o que assegurará que todos os **Foggers** iniciem e interrompam seu funcionamento
rápida e simultaneamente.

Qual a importância do tamanho das gotas geradas pelo sistema **Fogger** NaanDan?

Com a utilização do bocal de 7 I/h a uma pressão de 4 bar, o tamanho médio das finas gotas de neblina é de 90 micra. Estas gotas evaporam-se sem umedecer as folhas e o piso da estufa.

Projeto de instalação de um sistema Fogger NaanDan de 7 l/h (em "T"):

Espaçamento entre linhas: 3 m Espaçamento entre emissores: 1,5 - 2 m

Os atomizadores **Fogger NaanDan** deverão ser instalados o mais alto possível em relação ao solo.

Os **Foggers** deverão ser montados em forma de T, com dois emissores instalados perpendicularmente em relação a linha de abastecimento.

Os processos de resfriamento e de umidificação não são realizados simultaneamente.

Umidificação

Se é necessário aumentar o nível de umidade do ambiente, a ventilação deverá ser interrompida. A duração do pulso de neblina deverá ser a menor possível (1 segundo).

Os intervalos entre pulsos de neblina poderão ser modificados de acordo com a umidade relativa mínima requerida. Durante as manhãs, quando a temperatura aumenta e a umidade diminui, o sensor de umidade colocará o sistema de nebulização em funcionamento.

Determinação dos Intervalos Entre Pulsos de Neblina			
Umidade	Intervalo	Duração	
30 - 40%	60 segundos	1 segundo	
40 - 50%	90 segundos	1 segundo	
50 - 60%	120 segundos	1 segundo	

Pulverização

A pulverização de defensivos químicos por meio do sistema **Fogger NaanDan** tem sido usada com êxito em diversos países.

Qualidade da água

Com o objetivo de evitar a obstrução dos bocais por carbonatos e o depósito de sais sobre as folhagens, é recomendado evitar o uso de águas duras ou salobras. É necessário o uso de água filtrada ou tratada convenientemente.

Seleção de Bocais							
Cor	Azul	Laranja	Vermelho	Preto			
Vazão (I/h) a 4 bar	7,0	14,0	21,0	28,0			

NaanDan Ind. Com. Equip. Irrigação Ltda.

Rua Biazo Vicentin, 260 Cidade Jardim Leme/SP - CEP 13614-330 Fone: (19) 3571 4646 Fax: (19) 3554 1588

www.naandan.com.br

Revendedor Auto	orizado		